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Abstract—Today, many real-world machine learning and data
analytics problems are of a scale that requires distributed
optimization; unlike in centralized computing, these systems
are vulnerable to network and node failures. Recently, coding-
theoretic ideas have been applied to mitigate node failures in such
distributed computing networks. Relaxing the exact recovery
requirement of such techniques, we propose a novel approach for
adding redundancy in large-scale convex optimization problems,
making solvers more robust against sudden and persistent node
failures and loss of data. This is done by linearly encoding the
data variables; all other aspects the computation operate as
usual. We show that under moderate amounts of redundancy,
it is possible to recover a close approximation to the solution
under node failures. In particular, we show that encoding with
(equiangular) tight frames result in bounded objective error, and
obtain an explicit error bound for a specific construction that
uses Paley graphs. We also demonstrate the performance of the
proposed technique for three specific machine learning problems,
(two using real world datasets) namely ridge regression, binary
support vector machine, and low-rank approximation.

I. INTRODUCTION

Recent years have seen an enormous surge in interest for
large-scale data analytics and machine learning. Typically,
solving such large problems require storing data over a large
number of distributed nodes and running optimization al-
gorithms over these nodes. In such networks, an important
concern is the sudden onset of unresponsive or failed nodes
[1]. This can be caused by network failures, background
processes, or (in the case of low-cost cloud computing) sudden
deallocation of compute resources. In the case of short-term,
or intermittent unavailability, such failures can significantly
slow down the computation, since speed may be dictated by
the slowest node. In longer-term unavailability, it might affect
the accuracy of the final solution itself, since a fraction of data
is effectively eliminated from the optimization process.

A natural approach to combat node failure is to use redun-
dancy in the form of additional nodes, for example, by simply
replicating the data across multiple nodes. However, recently,
distributed coded computing has received some attention from
the information theory community [2], [3], [4], [5]. In partic-
ular, [3] used coding-theoretic ideas to provide robustness in
two specific linear operations: distributed matrix multiplication
and data shuffling. The work in [5] also focused on linear
operations, where the idea is to break up large dot products
into shorter dot products, and perform redundant copies of the
short dot products to provide resilience against failures. On the
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other hand, [4] considers synchronous gradient descent, and
proposes an architecture where each data sample is replicated
s times across nodes, and designs a code such that the exact
gradient can be recovered as long as fewer than s nodes fail.

In contrast to these works, which mainly focus on adding
redundancy in the implementation of a distributed algorithm,
we embed the redundancy in the formulation of the opti-
mization problem. The idea is to linearly encode the data
variables in the optimization, place the encoded data in the
nodes, and let the nodes operate as if they are solving the
original problem, ignoring failed nodes and stragglers. This
is inspired by the randomized sketching techniques [6] used
for dimensionality reduction in optimization; however, the
purpose, operating regime, and the tools used are different in
our problem. The main observation underlying our approach
is that one needs much less redundancy than in [4] if one
backs off from requiring exact recovery of the solution. For
instance, for e node failures, the results in [4] imply that one
needs a redundancy factor of e+1 for exact recovery, whereas
we show that the solution can be reasonably approximated
with a redundancy factor of 2. Such relaxation is motivated
by fields like machine learning, where approximate solutions
that achieve good generalization error are sufficient. The main
design objective then becomes how to design codes so that
with increasing number of failed nodes, the solution accuracy
degrades as slowly as possible. In particular, we observe (nu-
merically and analytically) that equiangular tight frames (ETF)
are attractive options as coding vectors, since (i) they contain
inherent redundancy; (ii), the individual elements provide as
much independent information as possible; and (iii), they
allow reconstruction of the exact solution when no nodes fail.
We also consider random codes, which asymptotically (data
length) achieve good performance; however, as numerical
evidence suggests, cannot achieve (iii) for finite lengths.

Our approach is not limited to a specific computational
operation, but is applicable directly to large class of practically
relevant optimization problems; specifically, any optimiza-
tion that can be formulated as a least-squares minimization
over a convex set, including linear regression, support vector
machines, compressed sensing, projection etc. Further, since
the nodes are oblivious to coding, the existing distributed
computing infrastructure and software can be directly used
without additional control/coordination messaging.

In this paper we focus on a model where nodes be-
come unavailable for the time frame of computation, where
a failed node does not recover throughout the duration of
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Fig. 1. A distributed optimization network, where m nodes communicate
directly with a centralized server. The local nodes compute terms specific to
their data (such as gradients), and the central node aggregates such terms and
computes simple steps, like small-dimension projections.

the computation. This can also be thought of as a model
where slow/straggling nodes are the same ones throughout the
computation, and these nodes are ignored by the system. The
case with asynchronous/intermittent failures and delays is a
natural ongoing extension.

Our main contributions are as follows. First, we derive a
general bound on relative objective error for encoding with
tight frames, and specialize this to equiangular tight frames1.
Second, using results from analytic number theory, we obtain
a tighter bound for a specific construction with redundancy
factor 2, which is constructed using Paley graphs [10]. To
the best of our knowledge, this is the first analysis of the this
particular tight frame construction in the context of robustness
against erasures. We also present an error bound for random
coding vectors. Bounds for other constructions with other re-
dundancy factors are possible. Third, we prove a lower bound
on the objective error for the special case of unconstrained
least squares optimization. Fourth, we numerically demon-
strate performance over three problems, two of which use
real world datasets, namely, ridge regression, binary support
vector machine classification, and low rank approximation.
The results show that the Paley construction outperforms
uncoded, replication, and random coding approaches.

The rest of the paper is organized as follows: Section II
presents our model and metrics of interest, Section III provides
our results on encoding with tight frames, Section IV gives
lower bounds for general linear encoding, and Section V
contains the numerical results on real datasets.

II. MODEL AND PRELIMINARIES

Consider the minimization

min
θ∈C

g (θ) := min
θ∈C
‖Xθ − y‖2, (1)

where C ⊆ Rd is an arbitrary convex set (that is globally
known), X ∈ Rn×d is the data matrix, and y ∈ Rn is the data
vector. We will denote a solution of this optimization as θ∗.

1Performance of frames under erasures have been studied in [7], [8], [9],
though not in the context of convex optimization. Further, these works either
focus on exact reconstruction, or only one or two erasures, or otherwise do
not provide a general error bound for arbitrary tight frames under arbitrary
number of erasures.

Consider mapping this optimization problem into a dis-
tributed computing setup (see Figure 1), where the data
variables Xi and yi are collectively stored across m worker
nodes, and a centralized server computes the solution without
ever seeing the data itself. Such an architecture is present in
most of the popular distributed computing and optimization
frameworks [11], [12]. Each worker node has sufficient mem-
ory to store `(d + 1) variables (i.e., ` rows of data), where
m` ≥ n. We define the redundancy factor β := m`

n ≥ 1, which
captures the amount of additional storage space available. We
consider a linear mapping of the data, where worker node
i ∈ [m] stores Zi = Si [X y], where Si ∈ R`×n is an
encoding matrix. We define S =

[
S>1 S>2 . . . S>m

]>
. Note

that, by setting S = In, or S = [In In . . .]
>, this framework

covers uncoded and repetition schemes as well2.
We assume that after the data placement, a subset A ⊆

[m] of the nodes are unavailable, and the data stored in the
unavailable nodes is assumed to be lost throughout the duration
of optimization, where |A| = e. We define, for a set U ⊆ [m],
SU = [Si]i∈U , i.e., SU is the submatrix of S corresponding
to the set of nodes U , and Ac = [m]\A.

Given a mapping S of the data, the worker nodes directly
communicate with the centralized server via (two-way) links
with no communication constraints, but cannot communicate
with each other. The worker nodes are also oblivious to the
encoding (i.e., they do not have access to {Si}). These two
assumptions imply that the nodes effectively attempt to solve
the encoded problem minθ∈C ḡ (θ), where

ḡ (θ) := ‖SXθ − Sy‖2 =

m∑
i=1

‖SiXθ − Siy‖2 (2)

using any distributed optimization algorithm (e.g., batch or
stochastic gradient descent, L-BFGS, proximal gradient de-
scent etc.). Since the objective function (2) is a sum of local
terms, by having all worker nodes compute, for instance, local
gradient terms, and summing them at the centralized server,
the centralized solution of (2) can be achieved.

We also assume that the available nodes (Ac) are oblivious
to the failed nodes (A), and they operate as if all nodes are
available. This assumption, and the fact that the failed nodes
(A) are unavailable throughout optimization imply that the
effective problem whose solution is reached is

min
θ∈C

g̃ (θ) := min
θ∈C
‖SAc(Xθ − y)‖2. (3)

We denote a solution to (3) as θ̂(S;X, y;A). Given an en-
coding matrix S, data variables (X, y), and a failure pattern
A, the relative error η∗(S;X, y;A) is defined as the smallest
η ≥ 1 such that

‖Xθ̂ − y‖2 ≤ η‖Xθ∗ − y‖2.

2From a technical standpoint, such linear encoding resembles the sketching
technique [6] used to approximate optimization problems by dimensionality
reduction. However, sketching uses randomized, short and wide S matrices
for dimensionality reduction; we use tall, deterministic S matrices to increase
the problem dimensions and add redundancy.



For a given S, the worst-case relative error is given by

γ(S, e) := sup
X,y

max
A:|A|=e

η∗(S;X, y;A).

Our goal is to design a matrix S such that γ(S, e) is minimized
and grows slowly with e, i.e., whose worst-case relative error
degrades gracefully with increasing number of failed nodes.

III. ENCODED DISTRIBUTED CONVEX PROGRAMS

Intuitively, one would expect a good encoding matrix S to
satisfy a number of properties. First, it must contain some
form of redundancy in its set of encoding vectors (the rows
s>i of S). Second, drawing from the intuition of the channel
coding theorem, individual encoding vectors must provide as
much independent information as possible. Third, the encoding
matrix should not add error; that is, when there are no failures,
the exact solution must be recoverable, assuming nodes are
oblivious to coding. Given such requirements, we turn to
equiangular tight frames (ETF) as a natural choice of set
of encoding vectors. Loosely speaking, ETFs constitute an
overcomplete basis for Rn, and whose individual elements are
as decorrelated as possible. More formally, a (unit-norm) tight
frame for Rn is a set {hi}nβi=1 ⊆ Rn of unit vectors (with
β ≥ 1), such that for any u ∈ Rn,

nβ∑
i=1

|〈hi, u〉|2 = β‖u‖2. (4)

The reader is referred to [13], [10] for more information on
frames.

Define the maximal inner product of a tight frame H by

ε(H) := max
hi,hj∈H
i6=j

|〈hi, hj〉| .

A tight frame for which |〈hi, hj〉| = ε(H) for every i 6= j is
called an equiangular tight frame (ETF).

Proposition 1 (Welch bound, [14]): Let H = {hi}nβi=1 be

a tight frame. Then ε(H) ≥
√

β−1
2nβ−1 . Moreover, equality is

satisfied if and only if H is an equiangular tight frame.
Therefore, an ETF minimizes the correlation between its
individual elements.

We define the tangent cone of the constraint set at the
optimum by

K := clconv
{
u ∈ Rd : u = t(θ − θ∗), t ≥ 0, θ ∈ C

}
,

where clconv denotes closure of the convex hull, and the
linearly transformed cone is defined by XK := {Xu : u ∈ K}.
We also define, for a set U , and a symmetric matrix P ,

λUmax(P ) = sup
u∈U, ‖u‖2=1

‖Pu‖2.

The case λR
n

max(P ) = λmax(P ), the largest eigenvalue of P
in absolute value (which is the spectral norm, since P is
symmetric).

Our first result bounds the relative error under encoding
with tight frames.

Theorem 1: Let S be such that {si}nβi=1 is a tight frame over
Rn. Then for any encoded optimization problem in the form
(3),

η∗(S;X, y;A) ≤ min
0≤c≤β

(
1 +

2λXKmax

(
S>ASA − cI

)
β − λmax

(
S>ASA

) )2

.

Corollary 1: Under the setup of Theorem 1,

γ(S, e) ≤
(

β

β −maxA:|A|=e
∥∥S>ASA∥∥2

)2

.

The proofs are given in Appendix A, which relies on tech-
niques from [15], as well as convex optimality conditions and
properties of tight frames. Note that the bound only depends on
the spectral properties of the lost component of the encoding
matrix S.

Theorem 1 and Corollary 1 show that when one encodes
the data with tight frames, worst-case relative error can be
uniformly bounded, and the error depends on the spectral
properties of the relevant submatrices SA of the encoding
matrix. We note that (as expected), as the redundancy factor β
grows, relative error goes to 1, and when e = 0, it is exactly 1,
which implies perfect recovery when no failures occur. Note
that this is not necessarily true for an arbitrary matrix S whose
Gram matrix S>S has non-zero eigenvalue spread, including
random matrices. We also note that to minimize the error,
one must design S such that any possible submatrix SA has
spectral norm close to 1.

Next we prove explicit bounds for equiangular tight frames,
by bounding the spectral norm of the submatrices SA. Al-
though these bounds are non-trivial, numerical evidence sug-
gests that tighter bounds may hold.

Theorem 2: If the rows of S form an equiangular tight
frame, then for 1 ≤ e < β−1

α(m,n) ,

γ(S, e) ≤
(

β

β − 1− eα(m,n)

)2

,

where α(m,n) = 1
m

√
nβ(β−1)

1−(nβ)−1 .
See Appendix B for proof. For a specific construction obtained
by using Paley conference matrices [10], we can in fact prove
a tighter result that holds with high probability (under random
failures). Let q be a prime number such that q ≡ 1 (mod 4),
and let Fq be the finite field of size q. Consider the graph
Gq whose vertices are the elements of Fq , and the elements
a 6= b are adjacent if and only if there exists r ∈ Fq such that
a− b ≡ r2 (mod q) (in which case a− b is called a quadratic
residue, and Gq is known as Paley graph). It can be shown
that [10] if Aq+1 is the 0-1 adjacency matrix of the graph
formed by combining Gq with an isolated node u, then the
matrix Mq+1 := 1√

q (Jq+1 − Iq+1 − 2Aq+1) + Iq+1, where
Jq+1 is the all-ones matrix, can be decomposed as

Mq+1 = Sq+1S
>
q+1,

where the rows of Sq+1 form an equiangular tight frame
with ε(Sq+1) = 1√

q . Using number-theoretic results on mul-
tiplicative quadratic residue characters in finite fields (see



Appendix C), we can obtain the following tighter bound for
this construction.

Theorem 3: Let S̆ be an ETF constructed from Paley graph
as above, where q+1 = 2n (so that redundancy factor β = 2).
Let S = PS̆, where P is a random permutation matrix that is
drawn uniformly random over all (2n)! permutation matrices.
Let A be uniformly random over all cardinality-e subsets of

[m]. Then for 1 ≤ e <
(

1
cα̃(m,n)

)4/3

and for any c > 1,

P

(
η(S;X, y;A) >

(
2

1− ce3/4α̃(m,n)

)2
)
≤ 1

c4
,

where α̃(m,n) :=
√

2
m− 1

`

(
2n
m

)1/4
.

To the best of our knowledge, Theorem 3 is the first analysis of
the erasure-robustness of Paley ETFs. This result shows that if
we scale the number of nodes m faster than n

1
3 , then the error

is small with high probability, even under a large number of
node failures. In fact, based on numerical evidence, we believe
the following, even tighter, deterministic bound holds for this
construction.

Conjecture 1: If S is an ETF constructed from Paley graph
as above, where q + 1 = 2n, then for 1 ≤ e < 1

α̃2(m) ,

γ(S, e) ≤
(

2

1−√eα̃(m)

)2

,

where α̃(m) := c√
m

for a universal constant c.
Note that there is no dependence on n in this bound.

Random coding: Another natural approach in designing
S could be choosing its elements i.i.d. random, e.g., with
Gaussian entries. In particular, using results from [15], and the
scaling behavior of singular values of i.i.d. Gaussian matrices
[16], it can be shown that the following holds (the details are
in Appendix D).

Proposition 2: For fixed β = m`
n , consider a family of

encoding matrices Sm ∈ Rm`×
m`
β , indexed by the number of

worker nodes m. Choose all entries of Sm i.i.d. from N
(
0, 1

n

)
.

Denote the relative error for m machines as η∗m(Sm;X, y;A),
for any A with |A| = e < mβ−1

β . Then, for any (X, y),

lim
m→∞

η∗m(Sm;X, y;A) ≤


√
β
(
1− e

m

)
+ 1√

β
(
1− e

m

)
− 1

4

.

Note that random coding can achieve a bound independent of n
as well, albeit asymptotically. In practice, however, we observe
that the spectral norm of submatrices of Paley ETF grows
slower than those of i.i.d. random matrices, and thus Paley
ETF achieves a slightly tighter bound on relative error for
finite data, as claimed in Conjecture 1, and further evidenced
in the results of the next section.

IV. LOWER BOUND FOR UNCONSTRAINED OPTIMIZATION

Given the results of Section III, one may wonder how they
compare with the performance of other possible encoding
techniques. In this section, we derive a lower bound on the
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Fig. 2. Performance for ridge regression, whereX is 1000×750 and µ = 0.1.
There are 750 processors and S has 2000 rows.

relative error for unconstrained optimization (C = Rd) for
arbitrary linear encoding. The bound is not necessarily tight,
but it still provides insight into how one should design the
encoding matrix.

Theorem 4: For any encoding matrix S, worst-case relative
error for unconstrained optimization is lower bounded by

γ(S, e) ≥ 1

4
(1 + max

A:|A|=e
κ(SAc))

2

where κ(Q) is the condition number of matrix Q.
The proof is provided in Appendix E, which is based on
constructing an adversarial data pair (X, y) for any given
encoding matrix S. Theorem 4 implies that in order to control
the error, one needs to design the encoding matrix so that any
relevant submatrix SAc is well-conditioned, which is similar to
the restricted isometry condition in compressed sensing [17].

V. NUMERICAL RESULTS

We explore three machine learning problems, two of which
use real world datasets. In each example, we compare four
cases: uncoded (S = In), replication code, Gaussian (Sij ∼
N (0, 1)), and Paley ETF. The redundancy factor β = 2 in
each case except the uncoded one. In the simulations, we
consider probabilistic availability of the nodes, where each
node independently fails with probability p. In each case we
plot relative error (η(p), representing relative error at failure
probability p) over 100 trials with different failure patterns,
with error bars at a 95% interval.

A. Ridge regression

The encoded ridge regression problem solves

minimize
θ

‖S(Xθ − y)‖22 + µ‖θ‖22, (5)

where µ > 0 is a regularization parameter. The rows of X
and y represent data feature vectors and labels respectively,
and the entries of the solution θ∗ are the feature regressors.

Figure 2 shows the relative error performance with respect
to failure probability, where y = Xz + n and each element
of X , y, and n is drawn independently from a Gaussian
distribution. The data matrix X is 1000×750 and the generated
encoding matrices have 1000 (uncoded), 2000 (replication,
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Fig. 3. Performance for solving SVM on reduced MNIST set for 4 vs. 9
disambiguation. HereX is 1000×784 and µ = 0.1. There are 500 processors.

Gaussian, Paley3) rows. The problem is solved using gradient
descent, where each worker node computes gradient terms
corresponding to their own data and the central node only
performs the aggregation and descent step.

B. Binary SVM classification

The MNIST dataset contains 28 × 28 binary images for
handwritten digits 0-9 [18]. We attempt to disambiguate 4’s
from 9’s using binary support vector machines, by solving the
reformulation suggested by [15, §3.4]:

minimize
θ

‖WTdiag(d)θ‖22 + µ‖θ‖22 = ‖Xθ‖22
subject to

∑
i θi = 1, θi ≥ 0,∀i.

(6)

The rows Wi are ith vectorized binary images (demeaned),
and di ∈ {1,−1} indicates if the ith sample is a 4 or 9. The
objective can be reformulated with X = [diag(d)W, I]T , and
the encoded problem has objective ‖SXθ‖22.

We reduce the MNIST train and test dataset to only the
digits 4 and 9, and additionally only use the first 1000 train
samples (W ∈ R1000×784). Fig. 3 shows the relative error
performance, where (6) is solved using FISTA [19], where
the worker nodes evaluate gradients and the centralized server
aggregates terms and computes the projection on the simplex.

C. Low rank approximation

The movielens ml-100k dataset [20] contains recommen-
dations of users for movies. The task is, given ratings in a
training set, predict the ratings in a separate test set. Given
rating matrix R, where Rij is the rating user i provided movie
j (if exists in the training set), and find the nearest low rank
approximate matrix completion of R. The following is an
encoded version of a popular convex approximation of the
rank-constrained matrix completion problem:

minimize
Θ

‖SXvec(Θ−R)‖2F
subject to ‖Θ‖∗ ≤ τ.

(7)

Here, ‖Z‖∗ is the nuclear norm (sum of the singular values
of Z) and serves as a convex proxy for rank. The matrix X
is such that Xvec(R) selects only the provided ratings Rij .

3Since Paley ETF has size (q + 1) × (q + 1)/2 for prime q, we take
the smallest prime s.t. q ≡ 1 (mod 4) (in this case, 2017) larger than the
required dimension, and take an arbitrary submatrix that matches the required
dimensions. The error due to this subsampling is negligible.
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Fig. 4. Performance for solving the matrix completion problem with the
subsampled movielens dataset. Here, X is 2757×7448, and τ = 100. There
are 100 processors and S has twice the number of rows as X .

We subsample the movielens dataset to leave only users
and movies that contribute the most ratings, resulting in 133
users and 56 movies, with 5,514 provided ratings evenly split
between train and test sets. (Resulting X is 2757 × 7448.)
(7) is solved using FISTA [19], with τ = 100. Figure 4 shows
relative error results and the mean squared error in test ratings,
defined as 1

|T |
∑

(i,j)∈T ((Rtest)ij−Xij)
2 where Rtest is the test

ratings matrix and T contains the (user, movie) pairs included
in the test set.

In all three examples, it is clear that coding increases
robustness in the presence of large numbers of node failures,
both in the relative error of the objective and in test error
metrics on real datasets. The tightness of the Paley frames is
also observed; in all cases there is no degradation when no
nodes fail, which is not true when using random encoding
matrices.
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APPENDIX A
PROOFS OF THEOREM 1 AND COROLLARY 1

The proof is based on a variation of the proof of the main
result in [15]; however, unlike the proof therein, we make use
of the properties of tight frames.

Fix a failure pattern A. We first note that since the rows of
S form a tight frame, S>S = βIn. Recalling that s>i is the
ith row of S,

S>ASA =
∑
i∈A

sis
>
i =

nβ∑
i=1

sis
>
i −

∑
i/∈A

sis
>
i

= S>S − S>AcSAc = βIn − S>AcSAc . (8)

Denoting the minimum and maximum eigenvalues of a matrix
by λmin(·) and λmax(·) respectively, and using (8), any unit
vector u satisfies

‖SAcu‖2 ≥ λmin

(
S>AcSAc

)
= β − λmax

(
S>ASA

)
. (9)

Defining e = θ̂ − θ∗, we have

‖Xθ̂ − y‖ ≤
(

1 +
‖Xe‖

‖Xθ∗ − y‖

)
‖Xθ∗ − y‖,

by triangle inequality. Therefore

η(S;X, y;α) ≤
(

1 +
‖Xe‖

‖Xθ∗ − y‖

)2

. (10)

For any 0 ≤ c ≤ β, consider

‖Xe‖2
(a)

≤ ‖SAcXe‖2
β − λmax

(
S>ASA

)
(b)

≤ −2
e>X>S>AcSAc(Xθ

∗ − y)

β − λmax

(
S>ASA

)
= −2

e>X>
(
S>AcSAc − (β − c) I

)
(Xθ∗ − y)

β − λmax

(
S>ASA

)

− 2 (β − c)
β − λmax

e>X>(Xθ∗ − y)

(c)

≤ −2
e>X>

(
S>AcSAc − (β − c) I

)
(Xθ∗ − y)

β − λmax

(
S>ASA

)
(d)
= 2

e>X>
(
S>ASA − cI

)
(Xθ∗ − y)

β − λmax

(
S>ASA

)
(e)

≤ 2

∥∥e>X> (S>ASA − cI)∥∥
β − λmax

(
S>ASA

) ‖Xθ∗ − y‖

(f)

≤ 2λXKmax

(
S>ASA − cI

)
β − λmax

(
S>ASA

) ‖Xe‖‖Xθ∗ − y‖,
where (a) follows by (9); (b) follows by re-arranging
‖SAc(Xθ̂− y)‖2 ≤ ‖SAc(Xθ∗ − y)‖2, which is true because
of the optimality of θ̂ for the encoded problem; (c) follows by
the convex optimality condition

〈X>(Xθ∗ − y), e〉 = 〈∇g(θ∗), θ̂ − θ∗〉 ≥ 0;

(d) follows by (8); (e) follows by Cauchy-Schwarz inequality;
and (f) follows by the definition of λXKmax, and the fact that θ̂
is feasible, so e ∈ K. This bound, together with (10), implies
Theorem 1 by minimizing over all possible choices of c.

To prove Corollary 1, first note that the bound is maxi-
mized when XK contains the eigenvector of

(
S>ASA − cI

)
corresponding to the largest eigenvalue. Choose X to map
an arbitrary e ∈ K to this eigenvector, which implies
λXKmax(S>ASA − cI) = λmax(S>ASA − cI) (recall that λmax

refers to the maximum absolute value of the eigenvalues,
hence equivalent to operator norm for any symmetric matrix).
Further choose c = 1

2λmax(S>ASA) to get

γ(S, e) ≤ min
0≤c≤β

max
|A|=e

(
1 +

2λmax

(
S>ASA − cI

)
β − λmax

(
S>ASA

) )2

= max
|A|=e

(
1 +

2λmax

(
S>ASA − 1

2λmax(S>ASA)I
)

β − λmax

(
S>ASA

) )2

(g)
= max
|A|=e

(
1 +

λmax

(
S>ASA

)
β − λmax

(
S>ASA

))2

= max
|A|=e

(
β

β − λmax

(
S>ASA

))2

,

where (g) follows by the fact that all eigenvalues of S>ASA are
between 0 and λmax(S>ASA) and thus the absolute values of
all eigenvalues of S>ASA− 1

2λmax(S>ASA)I are upper bounded
by 1

2λmax(S>ASA).

APPENDIX B
PROOF OF THEOREM 2

First we would like to bound
∥∥SAS>A − Ie`∥∥2

. Note that
the (i, j)th element of SAS>A is given by 〈si, sj〉 for i 6= j,
where s>i is the ith row of SA, and the diagonal of SAS>A−Ie`
consists of zeros. Since S is equiangular, Proposition 1 implies
that |〈si, sj〉| =

√
β−1
nβ−1 . Then by Gershgorin circle theorem,



all eigenvalues {λk} of SAS>A − Ie` satisfy

|λk| ≤
e∑̀
j=1

|〈si, sj〉| = e`

√
β − 1

nβ − 1
,

which, using the fact ` = nβ
m implies,

∥∥SAS>A − Ie`∥∥2
≤ e

m

√
nβ(β − 1)

1− 1
nβ

.

Using triangle inequality,∥∥S>ASA∥∥2
=
∥∥SAS>A∥∥2

≤ 1 +
e

m

√
nβ(β − 1)

1− 1
nβ

.

Plugging in this bound in Corollary 1 gives the desired result.

APPENDIX C
PROOF OF THEOREM 3

Recall that by construction, 2n − 1 = q is a prime such
that q ≡ 1 (mod 4). For any row index 1 ≤ i ≤ q, define
κ(i) as the index of the node row i of S corresponds to, i.e.,
κ(i) := d i`e. Further define π : [2n] → [2n] to be a random
permutation of the integers {1, . . . , 2n}, which is uniform over
each of the (2n)! realizations.

Let Ji be the 0-1 indicator variable denoting whether node
i is unavailable, (i.e., Ji = 1 if and only if i ∈ A), and J :=
{Ji}mi=1. Given e, we assume J takes uniformly at random
one of the

(
m
e

)
vector values consisting of e 1’s, and m − e

0’s. Note that Ji and Jj are not independent for i 6= j.
Given a finite field Fq , a ∈ Fq is called a quadratic residue

if there exists r ∈ Fq such that a ≡ r2 (mod q). Construct the
matrix L ∈ {−1, 0, 1}2n×2n such that

Lij =

{
χ(i− j), 1 ≤ i, j ≤ q
Ii 6=j , if i = q + 1 or j = q + 1

where χ is the quadratic residue character in Fq , defined by

χ(x) =

 0, if x = 0,
1, if x 6= 0 is a quadratic residue in Fq,
−1, otherwise.

In the above definition, we have assumed that the (q + 1)th
index corresponds to the isolated node appended to the Paley
graph.

Characters are important objects of study in analytic number
theory (see, e.g., [21] for more information on characters).
In particular, quadratic residue character χ is a multiplicative
character, satisfying the following properties, which can be
easily verified:

1) χ(1) = 1,
2) For a, b ∈ Fq , χ(a)χ(b) = χ(ab),
3) For a ∈ Fq , χ(a) = χ(a−1).
Proposition 3 ([21]): Let q be an odd prime. The quadratic

residue character χ over Fq satisfies∑
a∈Fq

χ(a) = 0.

Define

L̄ :=
[
LijJκ(π(i))Jκ(π(j))

]
i,j
.

Note that the matrix
√
q
(
SAS

>
A − I

)
(11)

is identical to the realization of L̄ corresponding to J such
that Ji = 1 ⇔ i ∈ A, up to padding with zeroes. Therefore,
they have the same spectrum and the problem reduces to
characterizing the expected spectral norm of L̄.

We will prove the following lemma.
Lemma 1: Let a, b ∈ Fq . Then∑

x∈Fq

χ(a− x)χ(b− x) = (−1 + qIa=b) .

Proof: The case a = b easily follows by the fact that∑
x∈Fq

χ(a− x)χ(a− x) =
∑
x∈Fq

Ia6=x = q − 1.

If a 6= b, using properties of χ(·),∑
x∈Fq

χ(a− x)χ(b− x) =
∑
x 6=a,b

χ(a− x)χ(b− x)

=
∑
x 6=a,b

χ(a− x)χ
(
(b− x)−1

)
=
∑
x 6=a,b

χ

(
a− x
b− x

)
=
∑
x 6=a,b

χ

(
1 +

a− b
b− x

)
(a)
=
∑
y 6=0,1

χ (y)
(b)
= −χ(1) = −1,

which completes the proof. (a) follows because in Fq every
non-zero element has a unique multiplicative inverse, hence
the argument of the character will take every value except 0
(since x 6= a) and 1 (since a 6= b); (b) follows by Proposition 3.

Now, consider

E
[
tr
(
L̄4
)]

= E

 ∑
i1,...,i4

Li1i2Li2i3Li3i4Li4i1Jκ(π(i1)) . . . Jκ(π(i4))


=

∑
i1,...,i4

Li1i2Li2i3Li3i4Li4i1E
[
Jκ(π(i1)) . . . Jκ(π(i4))

]
.

Note that, since π is uniformly random, we have

E
[
Jκ(π(i1)) . . . Jκ(π(i4))

]
=

(
e`
s

)(
m`
s

) ≤ ( e
m

)s
,

where s is the number of unique elements in the tuple
(i1, i2, i3, i4). Therefore

E
[
tr
(
L̄4
)]
≤

4∑
s=1

( e
m

)s ∑
i1,...,i4:

{i1,i2,i3,i4}=s

Li1i2Li2i3Li3i4Li4i1

=:

4∑
s=1

( e
m

)s
φ(s),



where we have defined the inner sum as φ(s). First, note that
φ(1) = 0 by the fact that this would require all ij to be equal,
and Lijij = 0 by definition. Next, consider

φ(2) =
∑

i1,...,i4:
{i1,i2,i3,i4}=2

Li1i2Li2i3Li3i4Li4i1

=
∑
a6=b

LabLbaLabLba =
∑
a6=b

L4
ab = q(q + 1)

by the fact that L is symmetric and all the off-diagonal
elements are ±1. Then

φ(3) =
∑

i1,...,i4:
{i1,i2,i3,i4}=3

Li1i2Li2i3Li3i4Li4i1

=
∑
a6=b
a 6=c
b 6=c

LabLbcLcbLba +
∑
a 6=b
a6=c
b6=c

LabLbaLacLca

=
∑
a6=b
a 6=c
b 6=c

L2
abL

2
bc +

∑
a6=b
a 6=c
b 6=c

L2
abL

2
ac = 2(q + 1)q(q − 1),

similarly by the symmetry and unit modulus of the elements
of L. Now,

4∑
s=1

φ(s) =
∑

i1,...,i4

Li1i2Li2i3Li3i4Li4i1

=
∑
i1,i3

(∑
i2

Li1i2Li2i3

)(∑
i4

Li3i4Li4i1

)
= q2

∑
i1,i3

Ii1=i3 = q2(q + 1),

where the third equality follows by Lemma 1 and the definition
of Lij , which implies

q+1∑
j=1

LijLjk = qIi=k.

The above results then imply

φ(4) = q2(q + 1)− 2(q + 1)q(q − 1)− q(q + 1)

= −q(q + 1)(q − 1).

Hence,

E
[
tr
(
L̄4
)]

=

4∑
s=1

( e
m

)s
φ(s)

=
( e
m

)2

q(q + 1)
(

1 +
e

m
(q − 1)

(
2− e

m

))
≤ 4

( e
m

)3

(q + 1)3.

Then, defining λi to be the ith largest eigenvalue of L̄, for
any a > 0,

P
(

max
i
|λi| > a

)
= P

(
max
i
|λi|4 > a4

)

≤ P

(∑
i

|λi|4 > a4

)
= P

(
tr
(
L̄4
)
> a4

)
(a)

≤ E
[
tr
(
L̄4
)]

a4
≤ 4

(
e
m

)3
(q + 1)3

a4
,

where (a) is by Markov inequality. Therefore, setting

a = c
√

2
( e
m

)3/4

(q + 1)3/4 = c
√

2 (e`)
3/4

for some constant c > 0, using that for A uniformly random
among all

(
m
e

)
possible e failures,

λmax

(
S>ASA

)
= λmax

(
SAS

>
A

)
= 1 +

1√
q
λmax

(
L̄
)
,

we get

P

(
λmax

(
S>ASA

)
> 1 + c

√
2

m− 1
`

e3/4`1/4

)
≤ 1

c4
,

which directly implies the result using Corollary 1.

APPENDIX D
PROOF OF PROPOSITION 2

We will use the following result (slightly loosened and
rephrased in our notation).

Lemma 2 ([15], Lemma 1): For any c > 0,

η (Sm;X, y;A) ≤
(

1 + 2
‖S>ASA − cI‖2
λmin

(
S>ASA

) )2

.

Using the results from [16], [22], we know that

λmax

(
(Sm)

>
A (Sm)A

)
→
(√

β
(

1− e

m

)
+ 1

)2

λmin

(
(Sm)

>
A (Sm)A

)
→
(√

β
(

1− e

m

)
− 1

)2

,

almost surely as m → ∞. Plugging these in Lemma 2, and
using c = 1 + β

(
1− e

m

)
, we get the desired result.

APPENDIX E
PROOF OF THEOREM 4

Given an S, we will construct a data pair (X, y) so that the
quantity

‖Xθ̂ − y‖2
‖Xθ∗ − y‖2

is maximized, where we choose (X, y) so that ‖Xθ∗−y‖2 > 0
by design, so the above is well-defined.

To this end, let us first fix θ∗, and assume y = Xθ∗ + r,
where r>X = 0, by the optimality condition. We can
equivalently construct the pair (X, r). Then the relative error
can be written as

‖Xθ̂ − y‖2
‖Xθ∗ − y‖2 =

‖X
(
θ̂ − θ∗

)
+ r‖2

‖r‖2
(a)
= 1 +

‖X
(
θ̂ − θ∗

)
‖2

‖r‖2

(b)
= 1 +

‖X
(
X>S>AcSAcX

)−1
X>S>AcSAcy −Xθ∗‖2

‖r‖2 =



1 +
‖X
(
X>S>AcSAcX

)−1
X>S>AcSAc(Xθ

∗ + r)−Xθ∗‖2
‖r‖2

= 1 +
‖X
(
X>S>AcSAcX

)−1
X>S>AcSAcr‖2

‖r‖2

where (a) follows by the fact that r>X = 0, and (b) follows by
plugging in the analytic expression for θ̂ = (SAcX)

†
(SAcy).

Let S>AcSAc = Q>ΛQ be the eigendecomposition of S>AcSAc ,
and define Z = QX and t = Qr, where we reduced the
problem to constructing (Z, t). Then

‖Xθ̂ − y‖2
‖Xθ∗ − y‖2

(a)
= 1 +

‖QX
(
X>S>AcSAcX

)−1
X>S>AcSAcr‖2

‖Qr‖2

= 1 +
‖Z
(
Z>ΛZ

)−1
Z>Λt‖2

‖t‖2
where (a) follows by the fact that `2 norm is invariant under
orthogonal transformations. Note that since we require r>X =
0, we have t>Z = 0. Therefore we set t = (I − ZZ†)v,
where there is no constraint on v. Plugging in this value for t
and simplifying, and also using the non-expansiveness of the
projection, which implies ‖v‖2 ≥ ‖t‖2, we have

sup
X,y

‖Xθ̂ − y‖2
‖Xθ∗ − y‖2

≥ sup
Z,v

(
1 +
‖Z
(
Z>ΛZ

)−1
Z>Λv‖2 − ‖U>v‖2
‖v‖2

)

= sup
Z,v

‖Z
(
Z>ΛZ

)−1
Z>Λv‖2

‖v‖2 ,

where U is a n× d matrix with orthonormal columns, whose
columns span the column space of Z. In the last equality, we
have used the fact that U is orthogonal.

Now, note that we can assume, without loss of generality,
S>AcSAc is positive definite, since otherwise we can construct
(X, y) with unbounded error, by choosing columns of X in
the eigenspace of S>AcSAc associated with zero eigenvalues.
Therefore, we can assume Λ is invertible. Define B = Λ1/2Z,
and P = B

(
B>B

)−1
B> to be the projection matrix on the

range space of B. We pick an X such that

P =

 1
2 0> 1

2

0 P̃ 0
1
2 0> 1

2


where 0 is the 0-vector and P̃ is some other idempotent matrix
of the appropriate size. Then P is an appropriate projection
matrix for the choice of B as

B =

 0> 1
2

B̃ 0
0> 1

2

 , P̃ = B̃
(
B̃>B̃>

)−1

B̃>.

We additionally pick v = α[1, 0, . . . , 0]> for any scalar α.
Then, denoting with λi the ith largest eigenvalue in Λ,

sup
X,y

‖Xθ̂ − y‖2
‖Xθ∗ − y‖2 ≥ sup

B,v

‖Λ−1/2B
(
B>B

)−1
B>Λ1/2v‖2

‖v‖2

=

(
λ

1/2
1 + λ

1/2
n

2λ
1/2
n

)2

=
1

4
(1 + κ(SAc))

2

where κ(SAc) =
√
λ1√
λn

is the condition number of SAc .


